

i

Claw Machine

Group Number: 8-10
Jordan Chow - 20822763 | Brandon Goh - 20822993

Masih Bouriayee - 20847134 | Sam Eskandar - 20822854
MTE 100/GENE 121

03/12/2019

 ii

Table of Contents
Table of Figures ... iv

Table of Tables .. iv

Summary ..v

Acknowledgements..v

Introduction .. 1

Description of Problem ... 1

Background Information ... 1

Scope ... 2

Main Functionality .. 2

Measuring and Detecting .. 3

Interaction with Environment ... 3

Use of Motors ... 3

Completed Tasks ... 4

Overall Shutdown Procedure .. 4

Changes in Scope .. 4

Constraints and Criteria .. 4

Constraints .. 4

Criteria... 5

Mechanical Design and Implementation ... 5

Description of Overall Design ... 6

Chassis Design ... 7

Motor Drive Design ... 8

Sensor Attachment Design ... 8

Overall Assembly ... 9

Design Decisions and Trade-offs ... 10

Software Design and Implementation .. 10

Task List Description and High-Level Software Overview... 11

Main and Function Descriptions ... 11

Testing ... 13

Verification .. 14

Constraints Met .. 14

iii

Constraints Not Met ... 17

Project Plan ... 18

Division of Tasks .. 18

Revisions to Project Plan ... 20

Project Plan vs Actual Schedule .. 20

Conclusion ... 21

Recommendations .. 21

Mechanical Design .. 21

Software Recommendations .. 22

References .. 23

Appendices .. 24

Appendix A ʹ Code of System ... 24

 iv

Table of Figures
Figure 1: Claw Machine in Arcade [4] ... 2
Figure 2: Top Front View of System .. 6
Figure 3: Claw Design and Pickup ... 7
Figure 4: Isometric View of System .. 7
Figure 5: 3D Printed Gear Track and Motor Drive System ... 8
Figure 6: System Retrieve Button ... 9
Figure 7: SolidWorks Sketch of the System .. 10
Figure 8: Software Flowchart .. 14
Figure 9: Axes of Motion of System .. 15
Figure 10: Wires of the System ... 16
Figure 11: Colour Sensor of System .. 16
Figure 12: Ultrasonic Sensor of System .. 17
Figure 13: 3D Printed Part of System .. 18

Table of Tables
Table 1: Explicit Functions and their Functionality ... 11
Table 2: Project Plan of Mechanical Components .. 18
Table 3: Project Plan of Software Components .. 19

v

SummarǇ

 The problem we are aiming to solve is to develop an autonomous claw machine that retrieves
objects based off of colour through the implementation of mechatronics principles [1].

 For our project, the final design required certain altercations from the previous design. Due to
the inaccuracy of the colour sensor, certain criteria had to be modified to determine a successful
system͘ Additionally, the touch sensor͛s functionality in our system had to be modified to ensure our
system worked properly.

Acknoǁledgements

We would like to express our thanks towards Ethan Childerhose for allowing our group to use his 3D
printer to print parts for our mechatronics system.

 1

Introduction

 The information in this section has been referenced from [1].

Description of Problem

The problem we are aiming to solve is to develop an autonomous claw machine that retrieves
objects based off of colour through the implementation of mechatronics principles. The stakeholders for
this project are all the members of the GENE 121 and MTE 100 teaching staff, and all the members of
our group.

The GENE 121 and MTE 100 teaching staff are directly impacted by our project because our
work is a reflection of the teaching staff͛s knowledge that they have passed on to us͘ It is important that
our group solves this problem because it is a validation of our learning, allowing the teaching team to
verify their teaching success through the quality of our mechatronics system.

The members of our group are included as stakeholders as the design process and construction
of the claw machine directly impacts how much we learn from the project. It is important that our group
solves this problem as it is a chance to gain practical learning skills that will contribute to our success in
future work terms. This project allows us to gain not only various technical skills (mechanical, software,
and electrical), but also gain experience in project and time management.

Background Information

A claw machine is commonly found in arcades, where the user controls a claw in order to grab
items and deposit them into a drop off location for the user to retrieve as seen in Figure 1 below.
Typically, these claw machines are user driven, where the player controls the movement of the claw
through a joystick and presses a button in order to lower the claw. The claw extends far enough to grab
the object and begins to slowly bring it over the drop off area to be deposited.

The game lasts for a certain interval of time (commonly 30 seconds), where the user is free to

control the claw until the time runs out [2]. The main challenge is that the claw͛s grip strength is only
given an appropriate level of power, a small percentage of the time [3]. This means the majority of the
time, the claw will not grip the object tightly enough, resulting in the object slipping out and falling
before making it above the drop off zone.

 2

Figure 1: Claw Machine in Arcade [4]

Scope

Main Functionality

Our mechatronics system is a claw machine, designed to locate and retrieve objects based on
the user͛s input of an object color͘ The tasks our robot completes are͗

x System start-up
x System activates when user is within 100cm of ultrasonic sensor
x Display screen activates and prompts the user for a colour to be retrieved

x Main Tasks
x After the user has confirmed a colour to be retrieved, the y-motor activates
x Next, the x-motor activates to scan across the row of objects
x Once the correct object color is read by the color sensor, the claw stops above the

object
x If necessary, the claw machine repositions itself directly above the object (to account for

the position of the colour sensor mounting)
x The z-motor activates, lowering a calculated distance

x This was changed from our initial design, in which the touch sensor would
signify when the object is within the grasp. Although, this feature was removed
as we discovered another unique application of the touch sensor for later on.

x The claw͛s motor activates in order to tighten and grasp the object
x The z-motor reverses, allowing the claw to return to the original height
x The claw then travels directly above the drop-off bin and releases the object into the

drop off bin

3

x The claw returns back to the starting position
x Once the touch sensor is pressed, the object is ready to be retrieved from the drop-off

bin
x Shutdown

x Once an object has been retrieved, the program prompts the user if they wish to play
again

x If they wish to play again, the system will restart, if they do not wish to play again, the
program ends

Measuring and Detecting

There were three sensors we incorporated into our design: touch sensor, ultrasonic sensor, and
colour sensor.

The ultrasonic sensor was used for the start-up procedure and constantly measured the distance
from the sensor. Once a physical object was detected within less than 100cm of the sensor, the program
started.

The colour sensor was used for the main functionality of our system. The colour sensor must be
within a 3 cm range in order for it to measure properly. This restriction was taken into consideration
when designing our system and we mounted or claw within this range. The colour sensor is constantly
detecting values when the claw is in motion, looking for the particular colour reading the user entered.

Finally, the touch sensor was used near the end of our program and acted as a retrieval button,
once the object was placed in the drop-off bin. We attached a cardboard sign on top of the touch sensor
to increase surface area and to clarify the purpose of the button. The touch sensor measured if a user
pressed it or not.

Interaction with Environment

Our system interacts with the environment, through the involvement of the user. The user is
directly involved with the functionality of the system, because they are able to select which object to
retrieve based off of color. The system then prompts the user whether they would like to play again or
not, also asking them to retrieve their collected item from the drop off bin. The system on its own is
stationary and has little to no interaction with its outside environment other than the user themselves.

Use of Motors

We used a total of 4 motors in our mechatronics system. The three large motors were used to
control the x, y, and z planes whereas the remaining medium motor was used to control the opening
and closing of the claw. The y axis motor would power on until it moved a distance of approximately 5
cm. The y axis motor would then stop, and the x axis motor would power on until it moved across the
entire frame, coming to a stop at the end of its path. This process would repeat until the color sensor
located the desired object. The z axis motor would then power on for a given time (enough time to drop
right above the object) and the motor controlling the claw would power on until it has a firm grip on the
object. The z axis motor would then raise itself to its original position, where the x and y axis motors
would move the claw to just over the drop off bin where the motor controlling the claw would release
the object.

 4

Completed Tasks

The system recognizes when tasks are completed through sensor readings and boolean
variables. Tasks can also be visually verified if they are completed through our group watching and
seeing if certain tasks are done. For example, we can visually verify if an object is picked up by the claw
or not͘ As for the program͛s verification, once certain tasks are complete, a boolean variable will be
switched from false to true or true to false depending on the variable͛s design͘

Overall Shutdown Procedure

The shutdown procedure involved the program prompting the user if they wished to play again.
This occurs after the system has retrieved an object. If they wish to play again, the system will run again.
If they do not want to play again the program will end. Alternatively, if an object is dropped during the
retrieval procedure, the claw returns to the starting procedure and ends the program. Finally, if all
objects have been retrieved and removed from the system, the claw machine will end.

Changes in Scope

A change in scope in our project, was the integration of the touch sensor. Originally, during the
earlier stages of our project we wanted to implement the touch sensor inside the claw in order to verify
when the object has been grabbed. This feature was removed from our final design and the touch
sensor was instead inserted at the front of the system. From there, the touch sensor acted as a button,
where the user presses it, in order to retrieve their toy. We made this adjustment because it was very
difficult to mount the touch sensor on the claw, since it was an additional sensor. This addition would
also add extra wiring which complicated the system.

We decided to use three objects in our system, instead of the original amount of four. This
decision was made because there was simply not enough room for the additional object in the span of
our system͘ The claw͛s size was larger than expected, therefore there was not enough room for the final
object.

Constraints and Criteria

Constraints

Our first constraint was to construct the system with the limited supplies provided to us. This
constraint was mainly met, although we 3D printed two tracks pads to allow easy movement in the x
and z direction.

This constraint was later discarded, since we decided it was more important to create a
functional system, than concern ourselves with the amount of materials we could use. Ultimately, this

5

lead to this constraint being invaluable since as the construction of our system progressed, we put a
lower value on the materials used and a larger emphasis on proper functionality.

Our second constraint was to have a system that allows for three axes of motion. This constraint
was essential for designing our system. This was one of the most important features of our system we
ensured we completed. By having three axes of motion, our claw is able to span across the entire box,
lower and raise the claw to grab objects, and drop-off items.

This constraint was extremely helpful when guiding our design, as it was crucial out system met
this constraint to be seen as a successful claw machine system.

Our third constraint was ensuring the dimensions of the system does not exceed the maximum
wire length. This constraint was very important to allow the claw to span across the system without
restrictions.

This constraint was essential for our system and therefore very helpful. Our system would not
be able to operate correctly if the wires were not long enough.

Finally, there are two constraints regarding the colour sensor and ultrasonic sensor - colour
sensor must be within a range of 3 cm and ultrasonic activates within a range of 5 to 200 cm.

These two constraints were important for planning our system, especially the colour sensor. The
colour sensor͛s extreme restriction required a large amount of planning for how to mount it on the claw
and how we designed our objects. As for the ultrasonic sensor, we coded it to activate within 100 cm, to
meet this constraint and help activate our system.

Criteria

The first criteria for our system was to correctly locate the specified item based on the user͛s
input, 15 out of 20 times.

The second criteria for our system was to correctly retrieve this object and release it in the drop-
off bin, 15 out of 20 times.

Both of these criteria had to be altered for demo day. After our system was complete and
testing was conducted, we found the colour sensor to be incredibly unreliable and inconsistent in its
readings. Therefore, we had to adjust the criteria for a working system, since the colour sensor simply
failed a large portion of the test runs, even though the code was correct. The new criteria was made to
be - the system must correctly locate, retrieve, and drop-off the item at least once out of five trials. This
was developed to account for the colour sensor͛s inaccurate readings͘

These two criteria work in conjunction with each other, in order to verify our entire system is
functioning properly. Therefore, both of these criteria helped guide our project design and
implementation.

Mechanical Design and Implementation

 6

Description of Overall Design

 The claw machine was designed to be able to move a claw in the x, y and z axes of a set space.
Three continuous motors were used to provide motion in these axes, while one servo motor was used to
power the claw. The claw spans a space of 20cmx * 20cmy * 15cmz, in which it can pick up and drop off
objects. The Lego EV3 brick was mounted at the front of the system and higher up allowing for the
simplest method of wiring the motors and sensors as seen below in Figure 2Figure 2: Top Front View
of System. Since most of the motors were located in the upper most part of our design, having the brick
near the top of the chassis allowed for shorter wires to be used, and less excess slack. Finally, the target
objects were constructed to allow for an efficient pick up by the claw. Assuming the worm gear
powering the claws fingers didn͛t close enough to grip the objects, the irregular shapes of the objects
reduced slippage and allowed for consistent pickups as seen below in Figure 3.

Figure 2: Top Front View of System

7

Figure 3: Claw Design and Pickup

Chassis Design
 The claw machine chassis was constructed out of Tetrix aluminum square tubes and measured
32cmx * 28cmy * 24cmz. This allowed for the maximum space our claw could move in without any
interferences. The base of our system was made out of brown cardboard so that there would be no
interference with the colour sensor as seen below in Figure 4. As well, our drop off zone had an area of
5cmx * 10cmy, allowing our objects to consistently land in its designated spot.

Figure 4: Isometric View of System

 8

Motor Drive Design

 For the movement across the x and y axes, instead of the conventional belt/pulley design used
in most claw machines, a mechanism was designed that would work better with the LEGO pieces. For
the x and y motors, a 60 tooth gear was attached to the motors via a 5cm shaft. A gear track based on
the ϲϬ tooth gear͛s spacing and pitch was designed on SolidWorks. The gear track was designed with
slots where it would be bolted to the Tetrix frame to allow for adjustability in height. Once completed,
the gear tracks were 3D printed and bolted onto the frame as seen below in Figure 5.

The motors and gears were then placed onto the track and sliders were fitted on to maintain a
linear motion. For the z axis, the motor was hooked up to a double winch with a coiled-up shoelace
attached to the claw. The double winch helped the claw avoid excessive swinging and rotation, making it
easier for the claw to detect and pick up the objects. Finally, a servo motor was used to power a worm
gear which in turn would rotate to power the claws fingers. The torque provided by the worm gear was
powerful enough to grip the objects tight and reduce the chances of any objects slipping off.

Figure 5: 3D Printed Gear Track and Motor Drive System

Sensor Attachment Design

Colour Sensor

The colour sensor is mounted on the side of the claw apparatus, facing downwards. This
location proved optimal for our design, as the colour sensor functions within a range of 3 cm. Therefore,
mounting the sensor on the claw, very close vertically to the objects was the best design for us.
Although, since the sensor was mounted on the side of the claw, we had to do additional calculations for
the claw to travel back a certain distance from where the reading was taken in order to grab the object.
The colour sensor was used to take readings of the colours of each object as it scanned across the box.
Once the correct colour was located, the retrieve procedure would occur.

Ultrasonic Sensor

9

For the ultrasonic sensor, we wanted to mount it somewhere facing towards the user at the
front of the machine͘ We chose a centered location which would read the user͛s body as they approach
the machine. This design was intentional, so the user could walk up to the machine and have it activated
from there.

Touch Sensor

The touch sensor is located on the front of the claw machine, pointing upwards. It is easily
accessible to the user and incorporates a small sign on top to increase surface area and notify the user
that they must ͞push to collect͟ their item͘ The touch sensor is used after the item has been placed in
the drop-off. Once the object has been dropped off, the user presses the button, allowing them to
access and retrieve their toy. This functionality was designed to represent the flap used in classic claw
machines that must be moved in order to retrieve a toy. Our touch sensor acts as a button, the user
must press before they can remove their item as seen below in Figure 6.

Figure 6: System Retrieve Button

Overall Assembly

The entire system was put assembled slowly, focusing on the main frame first. The frame was
constructed using the Tetrix steel beams. Next, the trackpads, gears, and corresponding motors for the
claw͛s x and y movement were assembled͘ These pieces all worked in conjunction with each other,
therefore they were constructed and assembled together. As for the claw, it was built separately and

 10

later attached. Once all sensors and motors were mounted, wiring was completed through the use of
wire extenders and zip ties to organize the cables. Finally, the drop-off bin was installed, and the objects
were placed on the floor of the claw machine. Figure 7 below shows our final sketch of the mechatronics
system done in AutoCAD.

Figure 7: SolidWorks Sketch of the System

Design Decisions and Trade-offs

Given our material constraints, there were a few design options that had to be modified or
changed altogether to accommodate for our parts. From our original CAD, we had wanted to build our
chassis out of wood to provide a larger space for the claw to span. Instead, we soon realized that the
LEGO pieces were made in metric and wood was sold in imperial. The difference in measurement
systems would result in a less accurate gear track system which would lead to less accurate object
pickups, so we opted to build our frame out of Tetrix beams instead.

Furthermore, another trade-off that had to be made was creating a gear track for the

movements across the axes instead of the traditional belt and pulley method used in conventional claw
machines. We decided on the gear track design as it was a simpler mechanism to implement on our
system. The belt and pulley method would require the purchasing of timing belts, several pulleys to fit
those belts, and an accurate positioning of those pulleys or else there would be slack and skipping in the
timing belt.

On the other hand, with the gear track mechanism, we only had to CAD two simple gear tracks,

get them 3D printed, bolt them onto our frame and run the motors with their gears to obtain our linear
motion.

Softǁare Design and Implementation

11

Task List Description and High-Level Software Overview

 When first designing the software for our Claw Machine, our group first separated each function
of the system. For example, we distinguished the start-up screen actions from the main functionality of
the claw, then we separated the claws function of searching for an object from returning it to the drop
off bin, and resetting the claws position to the start. By doing this, we were able to clearly identify the
functions we needed to write and what each function needed to receive and return.

 By breaking up the functionality of the system, the task list was also much easier to create and
follow. The task list starts with start-up, ensuring that the user selects a valid colour (must still be in the
span of the system). After the user selects a colour, a 1D integer array populated with the integer values
relating to the colour readings of the EV3 colour sensor and a 1D boolean array populated with all false
values are altered. The boolean array at the index of the colour chosen within the color (integer) array is
changed to true, ensuring that the user cannot select the same object more than once.

 Regular tasks are next on the task list, this section is essentially the core functionality of the claw
machine. The tasks were separated based on the function they relate to. Scanning, stopping above the
object, and picking the object up relate to objectPickup, bringing the object to the drop off bin relates to
objectTransport, and returning to the original position relates to reset (full calculations are shown in
Appendix A). This section of the task list is essential to ensure that the core functionality of the claw
machine remained intact throughout testing and demoing.

Unexpected Cases and Shut down procedure came next on the task list and essentially covered
that the claw machine handled wrong/invalid inputs and shutdown when the user collected their object
(if they did not choose to play again).

Main and Function Descriptions

Refer to Appendix A for code for each function. Table 1 below, goes into detail about the functions of
the code.

Table 1: Explicit Functions and their Functionality

Function Name Parameters Return Functionality

int colourLeft
(Jordan)

x int colours[]
x int coloursIndex

colourChosenNum Used to essentially iterate through
colour options, displaying on the
screen the colour that the user can
select then resetting and changing
the displayed option when the left
button is pressed

int colourRight
(Sam)

x int colours[]
x int coloursIndex

colourChosenNum Used to essentially iterate through
colour options, displaying on the
screen the colour that the user can

 12

select then resetting and changing
the displayed option when the right
button is pressed

int startup
(Brandon)

x int colours[]
x bool

coloursPicked[]

colourChosenNum
OR
400 (error
indication)
OR
404 (error
indication)

Starts by displaying the colour
options. The default colour selected
is black. The user can press the left
or right button to switch colours
and this function will call colourLeft
or colourRight to change the
display. If the up or down button is
pressed, it will prompt the user to
use only the left, right and center
button. Once the user has pressed
enter, it will check if the colour is
already chosen from an array, or if
all the colours have been chosen
already, by returning an integer
value of 400 and 404 respectively. If
not, it will return the index of the
colour chosen which coincides with
an array of colour options.

void
objectPickup

x int scanx
x int scany
x int powery
x int powerx
x int colour
x bool isThere
x int row

n/a Starts by moving 4.5cm in the y axis
at a power of 10% (powery) then
stops. Scans in the x axis until it sees
the selected colour. Changes
isThere to true (for use in main and
other functions). If isThere is true,
lowers claw to pick up object (aided
by timer) then raises the claw. If
isThere remains false, displays error
message

void
objectTransport

x int scanx
x int scany
x float yTogo
x float xTogo
x bool isThere
x int row
x int powerx

n/a Calculates the distance required to
travel to the drop off bin using the
values scanx and scany from
objectPickup.
If isThere is true (the object was
found) travels to the drop off bin
using the calculated values of yTogo
and xTogo

void reset x float yTogo
x float xTogo

n/a Returns the claw to the original
position using the values of yTogo
and xTogo

bool playAgain No parameters True or false (play
again or not)

Based off of selected buttons,
returns whether the user should
end or if they want to play again

13

bool
gameMode*

No parameters True or false (race
or not)

Based off of selected buttons,
returns whether the user wants to
play the racing mode or just retrieve
the object

bool isSuccesful No parameters True or false (did
the object get
returned or not)

Based off of selected buttons,
returns whether the user should
end or if they want to play again

int controls* No parameters Returns time
taken to retrieve
object

User controls the x and y axis
movement until they press the
enter button, they then control the
claw and z axis movement only
pressing enter when they retrieve
the object

main n/a n/a Waits for user to come within 100
cm from the screen. Prompts them
for what game mode they want (for
demo only autonomous game mode
was chosen). Allows user to keep on
selecting objects for retrieval until
there are no more or the user does
not want to play

*Extra functionality that was unable to get perfected for the demo

Testing

 The tests started with the functions corresponding to the display screen functionality. We first
tested if colourRight and Left worked as expected (reset and display a new option to the screen when
correct buttons are selected) and that unexpected inputs were ignored. Startup was then tested to
ensure that it handles invalid inputs (already selected colours) properly.

 We then tested the objectPickup and Transport. The way these were tested were first seeing if
the motors ran for the proper distance (ensuring it spanned the entire system). Then ensuring that the
claw stops over the object regardless of what colour was selected and where it was placed. This was
tested by placing objects of various colours in different spots and ensuring the claw stopped over the
right colour regardless of where it was found. This test was to ensure that the system was dynamic,
allowing for changes to be made without affecting the functionality of the machine.

 The shutdown procedures were tested next. This was done by running through the program
then selecting to play again and ensuring that the system allowed you to play again and did not shut
off/terminate instead. The same test was then repeated but the system was shutdown instead to ensure
that the user would not be stuck playing longer than they wanted to. Figure 8 below shows the planning
process through a flowchart made for the software portion of the system.

 14

Figure 8: Software Flowchart

Verification

Constraints Met

System must allow for 3 axes of motion

This constraint was met, since our system incorporated movement in the x, y, and z direction.
The claw was able to scan across the dimensions of our box by moving up, down and across rows. A
motor-controlled movement in the x direction, which was moving across the rows. An additional motor-
controlled movement in the y direction which was moving from row to row. Finally, the color sensor
continually scanned and when a correct measurement was read, the y motor would activate. This motor
would actuate to allow for the claw to raise and lower. These three axes of motion were proven to be
successful in the demonstration of our robot as seen below in Figure 9.

15

Figure 9: Axes of Motion of System

Must not exceed maximum wire length

Our system used almost every port of the LEGO EV3 brick, therefore requiring a large amount of
wires. By incorporating wire extenders, we were able to create long enough wires for our claw to span
the entire area. The wires were organized with zip ties allowing for clean cable management in our
system. From using the extenders, our system had more than enough wire slack, and therefore we met
the constraint of not exceeding the maximum wire length as seen below in Figure 10.

 16

Figure 10: Wires of the System

Colour sensor within 3 cm range

This criterion was met in our system, since we mounted the color sensor onto the claw, held at a
constant height of roughly 1 cm above the objects. All the objects used in our system, have the exact
same height. This distance of approximately 1 cm allowed for our colour sensor to activate and take
readings as seen below in Figure 11.

Figure 11: Colour Sensor of System

Ultrasonic within 5 cm and 200 cm range

The start up procedure for our program revolves around the ultrasonic sensor activating within
100 cm. By using this 100 cm range, we do not have to concern ourselves with the 200 cm boundary of
the ultrasonic sensor. As for the 5 cm range, the ultrasonic sensor is mounted within the system, making
it difficult for the user to come too close to the machine. Therefore, the 5 cm distance is not a large
issue for our system and can be seen below in Figure 12.

17

Figure 12: Ultrasonic Sensor of System

Constraints Not Met

Frame successfully developed from the limited building supplies given to us

This constraint was not met because our mechatronics system incorporated 3D printed parts in
order to properly function. Although, the majority of our system was constructed from the materials
supplied, there were certain pieces that we needed a certain way. The only way to accomplish this was
to design and print these parts using a 3D printer. These pieces were the trackpads for the x and z motor
to allow for the gear to rotate and travel across when the motor activated. Since these pieces were vital
for the functionality of our system, we chose to design the parts ourselves in SolidWorks, to achieve the
exact design we wanted. To address this issue, we could alter this constraint, stating our design must be
built using the parts supplied and no more than 5 in3 of volume of 3D print can be used. That way, we
can still design the crucial pieces in SolidWorks, although our new constraint is adjusted to limit the
amount of 3D printed parts used as seen below in Figure 13.

 18

Figure 13: 3D Printed Part of System

Project Plan

 The information in this section has been referenced from [1].

Division of Tasks

Mechanical Component:

One of the major components is the mechanical design of the system which consists of all
physical pieces used in systems such as the claw, frame, motors, sensor mounts and much more. Table 2
below shows the project plan of the mechanical components of our design.

Table 2: Project Plan of Mechanical Components

Sub-tasks Task Entailments Task Dependencies

Frame
Build
(Masih)

x Making sure the frame is sturdy enough
to support the weight of the arm, claw
and item

x Will be most time-consuming and must
consider other factors such as motor
size and wire length

Must be completed first in order to
mount other devices

19

Motor
Mounts
(Jordan)

x Making sure the wires can be attached
to the EV3 and will not interfere with
the movement of the arm

Must be completed second in order
for the sensors to have working
functionality with motors

Sensor
Mounts
(Sam)

x Making sure the sensors are mounted
properly and are able to function to the
best of its ability

x Colour sensor: Making sure it does not
interfere with the claw

x Ultrasonic sensor: Making sure nothing
blocks the view and has reading above
100cm without any users

x Touch sensor: Making sure it can be
placed inside the claw without
disrupting the grip of the item or claw

Must be completed third after most
of structure is complete

System
Design
(Brandon)

x Making sure every component fits
together properly and all pieces work
as one

Must be completed last once
everything has been mounted

Software Component:

Another major component is the software design of the system which consisted of all software
and code used in the claw machine. Table 3 below shows the project plan of the software components
of our design.

Table 3: Project Plan of Software Components

Sub-tasks Task Entailments Task Dependencies

Welcome
screen
(Brandon)

x Ultrasonic functionality
x Button functionality
x Choose colour
x Colour not chosen already

Must be completed first because
the device needs to know what
colour is chosen before proceeding

Correct
colour
(Jordan)

x Colour sensor functionality
x Knows desired colour

Should be completed 2nd or 3rd so
the robot knows what colour it is
looking for constantly

Motor
movement
(Sam)

Scan
x Movement of claw that will scan

all items in the box
x Z motor will be used to lower the

claw so that the colour sensor is
less than 3 cm above the items

Should be completed 2nd or 3rd so
the robot can scan and transport
the item

 20

x X and Y motor will be used to
scan through items and search
for the correct colour

Pickup item
x Touch sensor functionality
x Z motor will be used to pick up

item and bring it back up above
the other items

Move item
x X and Y motor will be used to

move the item to the bin dropoff
Place item

x Z motor will be used to place
item and bring the claw back up
to original height

Play again
(Masih)

x Asks the user if they would like to play
again

x Button functionality
x Reset claw machine to original position

Should be completed 4th after the
program has successfully run

Revisions to Project Plan

There were a few revisions to the project plan due to the lack of time, material or expertise
when building the claw machine. Initially, the group followed the project plan but there were many
conflicts when merging the mechanical and software components of the system. The overall base
functionality of selecting a colour, picking it up and moving it to the drop off bin was successfully done,
but additional features such as play again and the touch sensor on the claw could not be done.

For the software side, the play again feature was not able to reset to its original position due to
inaccurate measurement values regarding the motor encoder. We also tried to add a race feature by
hardcoding x and y values where the objects would be at so it would be faster than scanning the whole
span of the box. Then, the display would compare the time it took to retrieve an object of the users
choice and of the robots choice and see which one was faster. We were limited on our time due to
various other assignments, quizzes and reports throughout the weeks therefore this feature was
abandoned.

For the mechanical side, the claw could only handle 1 sensor due to the weight on the axle of
the claw that started to bend͘ Since the colour sensor was the main ͞autonomous͟ part of our system,
we decided to forgo the touch sensor. Then, we thought about implementing the touch sensor at the
bottom of the drop-off bin in order to confirm the object was not lost in transportation, but too heavy
objects would bend the z axle too much. Therefore, the touch sensor was used at the end of the system
process to ͞collect their item͟ as though the user reached into the claw machine and grabbed the
retrieved object.

Project Plan vs Actual Schedule

21

The project plan did not go as planned but it was anticipated that we would have errors and
setbacks along the way. The initial project plan to complete our system in 1 week from the Preliminary
Design Report due date turned out to be completed on the night before demo day. There were various
setbacks that we took into consideration along the way such as using a 3D printer to print the
customized trackpad for the x and y axis. Furthermore, the watIAM lab at Waterloo was fully booked
therefore we used a friend͛s 3D printer instead. Overall, there were various challenges along the way
from lack of materials to idea variations that members didn͛t agree upon that caused the projected plan
to go longer than expected.

Conclusion

The problem we are trying to solve is designing and constructing an autonomous claw machine

that retrieves specific objects based on colour and user input, through the implementation of
mechatronics principles.

Our design was not capable of meeting the original constraints, due to the inaccuracy of the
colour sensor. Therefore, new criteria were created of successful location and retrieval of the correct
object at least once out of five times. Our final system was able to successfully meet these altered
criteria. As for constraints, all constraints were met, except designing the frame with only the parts
given. In order to have the precision of parts we required, we decided to 3D print certain parts, failing to
meet this constraint.

Important features regarding the mechanical design are the motors, gears, and trackpads that
allow three degrees of motion. This requirement was crucial for us to achieve, in order to have a
complete claw machine. The motors, gears, and trackpads all worked in conjunction with each other in
order to move the claw across the span of the frame. This mechanical movement was executed through
a detailed software design.

Finally, key features for the software aspect included a screen display that allows the user to see
exactly what colour they would choose rather than simply being told to push a button corresponding to
an object/colour as well as keeping track of which colours have been taken. A scanning of the system
that locates the object based on colour while also keeping track of the distances it travels in order to
return the object to the drop off bin and reset its positioning. A successful transport of the object the
required distances from a previous function to the drop off bin. Lastly, a successful shut down procedure
based on the progress of the game (how many objects have been retrieved) and user input (whether
they choose to play again or not).

Recommendations

Mechanical Design

 22

With our current design, our claw only spanned a space of 20cmx x 20cmy x 15cmz. If we were
able to create a system that could span a greater area, then there would be more room to place objects
and there would be less worry of interfering with objects during our pickups͘ This could͛ve been done by
having longer Tetrix beams to make our frame out of. As well, if we had been supplied with sturdier
rods, the rod holding up our claw machine would be able to support more weight on its end, and we
would have been able to incorporate a touch sensor onto our claw mechanism͘ This would͛ve allowed
for both these design improvements would result in more versatile mechanisms, allowing us to produce
a better overall mechanical system.

Software Recommendations

Some ways the software design could have been improved is by adding more functions to the
source code. As it stands right now, there are a lot of functions written, although the main is still
crowded. In addition to the main being very crowded, there are a lot of repeated tasks within main. For
example, the overall function of the system is repeated twice (once for each game mode) so this could
have been replaced with one single function.

By making this change, debugging the program would have been much easier. In the programs
current state, when something was not working, we would have to check every function that relates to
the issue, along with main itself. If more functions were added and main was tidied up, we would simply
need to look through the functions and debugging could be done in a more systematic and simpler
process.

23

References

[1] J. C. S. E. B. G. M. Bouriayee, "Preliminary Design Report," University of Waterloo, Waterloo,

2019.
[2] Wikipedia, "Claw Crane," 27 October 2019. [Online]. Available: https://en.wikipedia.org/wiki

/Claw_crane. [Accessed 3 December 2019].
[3] P. Edwards, "Claw machines are rigged Ͷ here's why it's so hard to grab that stuffed animal,

" Vox Media, 3 June 2015. [Online]. Available: https://www.vox.com/2015/4/3/8339999/claw
-machines-rigged. [Accessed 3 December 2019].

[4] "Claw Crane," Wikipedia, [Online]. Available:
https://upload.wikimedia.org/wikipedia/en/thumb/0/0a/Snorkelling_with_the_swollen_purp
le_head.JPG/1920px-Snorkelling_with_the_swollen_purple_head.JPG. [Accessed 3 December
2019].

 24

Appendices

Appendix A ʹ Code of System

// Sam Eskandar, Masih Bouriayee, Jordan Chow, Brandon Goh
const int COLOURSIZE = 3;
const float XMAX = 15.5 * 360 / (4 * PI);
const float YMAX = 4.5 * 360 / (4 * PI);
// radius of wheel = 2cm

int colourLeft(int* colours,int & coloursIndex)
{
 coloursIndex--;
 if (coloursIndex < 0)
 {
 coloursIndex += 4;
 }
 int colourChosenNum = 0;

 colourChosenNum = colours[coloursIndex];
 displayString(2,"Black | Red | Blue");

 return colourChosenNum;
}

int colourRight(int *colours,int & coloursIndex)
{
 coloursIndex++;
 if (coloursIndex > 3)
 {
 coloursIndex -= 4;
 }
 int colourChosenNum = colours[coloursIndex];
 displayString(2,"Black | Red | Blue");

 return colourChosenNum;
}

int startup(int *colours,bool *coloursPicked)
{
 int allColours = 0;
 int coloursIndex = 0;
 int colourChosenNum = colours[coloursIndex];

 while(!getButtonPress(buttonEnter))
 {
 displayString(2,"Black | Red | Blue");
 if(getButtonPress(buttonLeft))

25

 {
 while(getButtonPress(buttonLeft))
 {}
 eraseDisplay();
 colourChosenNum = colourLeft(colours, coloursIndex);
 displayString(3,"Selected Colour : ");
 if (colourChosenNum == 1)
 displayString(4,"Black");
 else if (colourChosenNum == 2)
 displayString(4,"Blue");
 else
 displayString(4,"Red");
 }

 else if(getButtonPress(buttonRight))
 {
 while(getButtonPress(buttonRight))
 {}
 eraseDisplay();
 colourChosenNum = colourRight(colours,coloursIndex);
 displayString(3,"Selected Colour : ");
 if (colourChosenNum == 1)
 {
 displayString(4,"Black");
 }
 else if (colourChosenNum == 2)
 {
 displayString(4,"Blue");
 }
 else
 {
 displayString(4,"Red");
 }
 }
 else if(getButtonPress(buttonUp))
 {
 displayString(9,"Please use the left, right");
 displayString(10,"and center button Only");
 }
 else if(getButtonPress(buttonDown))
 {
 displayString(9,"Please use the left, right");
 displayString(10,"and center button Only");
 }
 }
 //colour already chosen error 400
 if (coloursPicked[coloursIndex] == 1)
 {
 eraseDisplay();
 displayString(9,"Colour already chosen");

 26

 return 400;
 }

 //all objects are gone error 404
 coloursPicked[coloursIndex] = true;
 for (int index = 0; index < 3; index++)
 {
 if (coloursPicked[index] == 1)
 allColours += 1;
 }
 if (allColours == 3)
 return 404; //terminates program

 else
 return colourChosenNum; //continues program
}

void objectPickup(int &scanx, int &scany, int powery, int powerx, int color, bool &isThere,
int &row)
{
 isThere = false;

 //for (int counter = 0; counter < 2; counter++)
 //{
 if (SensorValue[S1] != color) // color is the variable
 {
 nMotorEncoder[motorB] = 0;
 while (abs(nMotorEncoder[motorB]) < YMAX)
 {
 motor[motorB] = powery;
 }
 motor[motorB] = 0;
 nMotorEncoder[motorA] = 0;
 while (abs(nMotorEncoder[motorA]) < XMAX && SensorValue[S1] != color)
 {
 motor[motorA] = powerx;
 if(SensorValue[S1] == color)
 {
 wait1Msec(500);
 isThere = true;
 }
 }

 motor[motorA] = 0;
 //powerx *= -1;
 scanx = (4 * PI * nMotorEncoder[motorA]) / 360;
 scany += 4.5;
 }
 //row++;
 //}

27

 if (isThere == true)
 {
 motor[motorA] = (-1)*powerx;
 wait1Msec(1000);
 motor[motorA] = 0;
 motor[motorC] = -15;
 wait1Msec(1000);
 motor[motorC] = 0;

 time1[T1] = 0;
 while(time1[T1] < 5000) // to be changed after testing
 {
 motor[motorD] = -20;
 }
 motor[motorD] = 0;

 motor[motorC] = 15;
 wait1Msec(4000);
 motor[motorC] = 0;
 }

 else
 {
 eraseDisplay();
 displayString(8, "No Object detected, is it");
 displayString(9, "out of bounds?");
 }
}

void objectTransport(int scanx, int scany, float &yTogo, float &xTogo, bool isThere, int row,
int powerx)
{
 nMotorEncoder[motorB] = nMotorEncoder[motorA] = 0;
 xTogo = (17 - scanx) * 360 / (4 * PI);
 //if (row == 2)
 //{
 // xTogo = (17 - scanx) * 360 / (4 * PI);
 // powerx *= -1;
 // //xTogo = scanx* 360 / (4 * PI);
 // ////powerx *= -1;
 //}

 //else
 //{
 // xTogo = (17 - scanx) * 360 / (4 * PI);
 // powerx *= -1;
 //}

 yTogo = (scany + 1) * 360 / (4 * PI);

 28

 if (isThere == true)
 {
 while(abs(nMotorEncoder[motorB]) < yTogo)
 {
 motor[motorB] = 10;
 }

 motor[motorB] = 0;

 while(abs(nMotorEncoder[motorA]) < xTogo)
 {
 motor[motorA] = powerx;
 }
 motor[motorA] = 0;

 motor[motorD] = 20;
 wait1Msec(6000);
 motor[motorD] = 0;
 }
}

void reset(float yTogo, float xTogo)
{
 nMotorEncoder[motorA] = nMotorEncoder[motorB] = 0;
 while(abs(nMotorEncoder[motorB]) < yTogo)
 {
 motor[motorB] = 20;
 }

 motor[motorB] = 0;

 nMotorEncoder[motorA] = 0;
 while(abs(nMotorEncoder[motorA]) < xTogo)
 {
 motor[motorA] = -20;
 }
 motor[motorA] = 0;

 motor[motorD] = -15;
 wait1Msec(6000);
 motor[motorD] = 0;
}

bool playAgain()
{
 bool status = false;

 while (SensorValue[S2] != true)
 {

29

 displayString(8, "Would you like to play again?");
 displayString(9, "Press touch for yes and");
 displayString(10, "any other button for no");
 if (getButtonPress(buttonAny))
 {
 return status;
 }
 status = false;
 }
 status = true;
 while(!getButtonPress(buttonAny))
 {
 }
 return status;
}

bool gameMode()// returns true if the user wants to race the robot
{
 displayString(8, "Would you like to race?");
 displayString(9, "Press enter for yes and");
 displayString(10, "any other button for no");

 if (getButtonPress(buttonEnter))
 {
 return true;
 }
 else
 return false;
}

bool isSuccesful()
{
 eraseDisplay();
 bool status = false;

 while (SensorValue[S2] != true)
 {
 displayString(8, "Would you like to play again?");
 displayString(9, "Press touch for yes and");
 displayString(10, "any other button for no");
 if (getButtonPress(buttonAny))
 {
 return status;
 }
 status = false;
 }
 status = true;
 while(!getButtonPress(buttonAny))
 {
 }

 30

 return status;
}

int controls() // unfinished extra functionality (not part of requirements)
{
 eraseDisplay();
 displayString(6, "The controls are as follows");
 displayString(7, "Up and Down buttons control y");
 displayString(8, "axis and right and left for x");
 displayString(9, "Once centred above the object,");
 displayString(10, "press the enter button once, then");
 displayString(11, "the up and down buttons will raise");
 displayString(12, "and lower the claw, the right button");
 displayString(13, "will close the claw, and the left open");
 displayString(14, "GLHF");
 wait1Msec(10000);
 time1[T1] = 0;

 while (!getButtonPress(buttonEnter))
 {
 if (getButtonPress(buttonRight))
 {
 while (getButtonPress(buttonRight))
 {
 motor[motorA] = 20;
 }
 motor[motorA] = 0;
 }

 if (getButtonPress(buttonLeft))
 {
 while (getButtonPress(buttonLeft))
 {
 motor[motorA] = -20;
 }
 motor[motorA] = 0;
 }

 if (getButtonPress(buttonUp))
 {
 while (getButtonPress(buttonUp))
 {
 motor[motorB] = 20;
 }
 motor[motorB] = 0;
 }

 if (getButtonPress(buttonDown))
 {

31

 while (getButtonPress(buttonDown))
 {
 motor[motorB] = -20;
 }
 motor[motorB] = 0;
 }
 }

 while (!getButtonPress(buttonEnter))
 {
 if (getButtonPress(buttonRight))
 {
 while (getButtonPress(buttonRight))
 {
 motor[motorC] = 20;
 }
 motor[motorC] = 0;
 }

 if (getButtonPress(buttonLeft))
 {
 while (getButtonPress(buttonLeft))
 {
 motor[motorC] = -20;
 }
 motor[motorC] = 0;
 }

 if (getButtonPress(buttonUp))
 {
 while (getButtonPress(buttonUp))
 {
 motor[motorD] = 20;
 }
 motor[motorD] = 0;
 }

 if (getButtonPress(buttonDown))
 {
 while (getButtonPress(buttonDown))
 {
 motor[motorD] = -20;
 }
 motor[motorD] = 0;
 }
 }
 return time1[T1];
}

task main()

 32

{
 SensorType[S1] = sensorEV3_Color;
 wait1Msec(50);
 SensorMode[S1] = modeEV3Color_Color;
 wait1Msec(50);
 SensorType[S2] = sensorEV3_Touch;
 SensorType[S3] = sensorEV3_Ultrasonic;
 motor[motorA] = motor[motorB] = motor[motorC] = motor[motorD] = 0; //assuming A and B
are x-y respectively, C controls z and D controls claw
 nMotorEncoder[motorA] = nMotorEncoder[motorB] = 0;

 int scanx = 0, scany = 0, powery = -10, powerx = 10, row = 1;
 int colourChosenNum = 0;
 float yTogo = 0, xTogo = 0;
 int colours[COLOURSIZE] = {1,5,2};
 bool plays = true, race = false, isThere = false;
 bool coloursPicked[COLOURSIZE] = {false,false,false};

 while(SensorValue[S3] > 100)
 {}

 while (colourChosenNum != 404 && plays == true)
 {
 while(!getButtonPress(buttonAny))
 {
 race = gameMode();// race false signifies that the "race" game mode has not been
selected
 }

 if (race == false)
 {
 displayString(1,"Please select a colour: ");
 displayString(2,"Black | Red | Blue");
 displayString(3,"Selected Colour : Black");

 colourChosenNum = startup(colours, coloursPicked);
 while(colourChosenNum == 400)
 {
 wait1Msec(1000);
 int newNum = startup(colours,coloursPicked);
 colourChosenNum = newNum;
 }
 objectPickup(scanx, scany, powery, powerx, colourChosenNum, isThere, row);
 objectTransport(scanx, scany, yTogo, xTogo, isThere, row, powerx);
 eraseDisplay();
 if (isThere == true)
 {
 if(isSuccesful() == false)
 {
 reset(yTogo, xTogo);

33

 }
 }
 plays = playAgain();
 if (plays == true)
 {
 reset(yTogo, xTogo);
 }
 }

 else
 {
 displayString(1,"Please select a colour: ");
 displayString(2,"Black | Red | Blue");
 displayString(3,"Selected Colour : Black");
 colourChosenNum = startup(colours, coloursPicked);
 float userTime = controls()/1000.0;
 eraseDisplay();
 displayString(8, "Your time is %f", userTime);
 displayString(9, "Please return the object");
 wait1Msec(20000);
 eraseDisplay();
 colourChosenNum = startup(colours, coloursPicked);
 objectPickup(scanx, scany, powery, powerx, colourChosenNum, isThere, row);
 objectTransport(scanx, scany, yTogo, xTogo, isThere, row, powerx);

 }
 }
}

